Extraction of Graphene-Titanium Contact Resistances using Transfer Length Measurement and a Curve-Fit Method

نویسندگان

  • Johanna Anteroinen
  • Wonjae Kim
  • Kari Stadius
  • Juha Riikonen
  • Harri Lipsanen
  • Jussi Ryynänen
چکیده

Graphene-metal contact resistance limits the performance of graphene-based electrical devices. In this work, we have fabricated both graphene field-effect transistors (GFET) and transfer length measurement (TLM) test devices with titanium contacts. The purpose of this work is to compare the contact resistances that can be numerically extracted from the GFETs and measured from the TLM structures. We also provide a brief review of the work done in the field to solve the contact resistance problem. Keywords—Contact resistance, graphene, TLM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Analysis of Experimental Process of Production, Stabilizing and Measurement of the Thermal Conductivity Coefficient of Water/Graphene Oxide as a Cooling Nanofluid in Machining

The abrasion is a significant issue, especially in machining of rigid steels. A functional and suitable approach for enhancing the heat transfer from machining area is using an intermediate fluid with higher heat transfer potential instead of common fluids. The objective of this experimental study is to discuss production, stability and thermal conductivity examination of water/graphene oxide n...

متن کامل

The Analysis of Experimental Process of Production, Stabilizing and Measurement of the Thermal Conductivity Coefficient of Water/Graphene Oxide as a Cooling Nanofluid in Machining

The abrasion is a significant issue, especially in machining of rigid steels. A functional and suitable approach for enhancing the heat transfer from machining area is using an intermediate fluid with higher heat transfer potential instead of common fluids. The objective of this experimental study is to discuss production, stability and thermal conductivity examination of water/graphene oxide n...

متن کامل

Sensitive Simultaneous Measurement of Metformin and Linagliptin in Plasma Samples by Couple of Nano Graphene Oxide-based Dispersive Solid Phase Extraction Method and Liquid Chromatography

A simple, rapid, and ultra sensitive dispersive solid phase extraction based on nano graphene oxide was developed for simultaneous measurement of trace amounts of metformin (MET) and linagliptin (LIN) in plasma samples by HPLC-UV-Vis. Affecting factors on the extraction of these drugs, including adsorbent weight, extraction time, organic solvent type, desorption situations, and composition of s...

متن کامل

Sensitive Simultaneous Measurement of Metformin and Linagliptin in Plasma Samples by Couple of Nano Graphene Oxide-based Dispersive Solid Phase Extraction Method and Liquid Chromatography

A simple, rapid, and ultra sensitive dispersive solid phase extraction based on nano graphene oxide was developed for simultaneous measurement of trace amounts of metformin (MET) and linagliptin (LIN) in plasma samples by HPLC-UV-Vis. Affecting factors on the extraction of these drugs, including adsorbent weight, extraction time, organic solvent type, desorption situations, and composition of s...

متن کامل

Tuning thermal contact conductance at graphene-copper interface via surface nanoengineering.

Due to rapidly increasing power densities in nanoelectronics, efficient heat removal has become one of the most critical issues in thermal management and nanocircuit design. In this study, we report a surface nanoengineering design that can reduce the interfacial thermal resistance between graphene and copper substrate by 17%. Contrary to the conventional view that a rough surface tends to give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012